为实现这一目标,莫迪政府将发展可再生能源和清洁技术的目标与经济自由化和促进私营部门发展的政策结合起来。
中新网上海2月14日电 (记者 陈静)牛顿(Isaac Newton)和格雷戈里(David Gregory)于1694年提出的“亲吻数问题”迎来系统性突破。记者14日获悉,上海科学智能研究院(下称“上智院”)联合北京大学、复旦大学组成研究团队,设计多智能体强化学习系统PackingStar,在多个维度刷新亲吻数与广义亲吻数纪录,实现数学结构领域罕见的多维度、系统性突破。
逾330年前,牛顿和格雷戈里在剑桥提出一个问题:在一颗中心球周围,最多能紧贴放置多少颗相同的球?这就是三维空间的“亲吻数问题”(Kissing Number Problem, KNP)。当维度升高,问题便进入“无人区”。
据悉,中国的研究团队设计强化学习系统PackingStar,将亲吻数的高维堆积问题转化为余弦矩阵填充问题,在多智能体协作框架下探索远超人类直觉的复杂空间。据悉,PackingStar项目通过系统性的工程优化,使计算效率显著提升,同时构建稳定的容错机制,为大规模、长周期计算提供可靠支撑。
PackingStar实现跨维度连续突破:在25维-31维刷新人类已知最佳结构;打破14维与17维长期保持的“两球亲吻数”纪录以及12维、20维、21维“三球亲吻数”纪录;在13维发现优于1971年以来所有有理构造的新结构。他们还在多个维度发现6000余个新构型。这些由AI生成的结构,数学多样性极为丰富,包含着数学家从未想到过的构造方式。中国学者们的相关成果获得麻省理工学院教授、离散几何领域权威亨利·科恩(Henry Cohn)的高度评价。
据了解,这不是AI第一次尝试破解亲吻数问题,但是在过去几年中,只有一次突破,即:DeepMind的AlphaEvolve通过修补11维构型,将最优值从592提到了593,但其生成的构型较为混乱,缺乏内在的数学结构。相比之下,PackingStar不再局限于个别维度优化、基于已有几何构造做简单拓展,而是选择重新定义问题本身,将高维几何难题转化为AI模型所擅长的代数计算问题,形成可跨维度迁移的探索路径。研究团队方面表示,这不是工具层面的替换,而是开创了全新的方法论,带来了AI for Math范式的一次前移。
在研究过程中,研究团队还逐步形成稳定的人机协作模式。上智院理事长、复旦大学校长助理吴力波表示,上智院为青年科学家搭建开放协作平台,将宏大的科学目标拆解为具体项目,由人工智能与科研人员协同推进,并以工程效率和系统稳定性对冲探索过程中的不确定性,使重大问题能够持续、有序推进。
三百多年前的科学问题,如今迎来新的推进方式,这意味着,在人工智能加速进入基础科学领域、驱动科研范式变革的背景下,数学研究正呈现新的探索路径。(完) 【编辑:付子豪】
贝尔提出,如今,这个词通常用作国家文化战争中的大棒,被纽特·金里奇这些政客推而广之:金里奇一直称赞美国是历史上最为独特的文明,并且抨击任何不信奉这个概念的人。。
- 今日热点
- 什么时候,我们不再为反腐剧狂欢?
- 天津:新材料企业新春生产忙
- 一份报告令印度首富的公司市值蒸发700亿美元 莫迪也备受考验
- 乙类乙管后首个春节,返乡路上知晓三个法律问题
- 三年行动首战之年·奋力夺取开门红丨投资超60亿元的清洁能源建设项目在沈阳大连等五市集中开工——海陆共进 “风光”可期
- 十二生肖为什么兔子排第四?他们说......